A synopsis of Combinatorial Integral Geometry

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial Geometry

Combinatorial geometry is the study of combinatorial properties of fundamental geometric objects, whose origins go back to antiquity. It has come into maturity in the last century through the seminal works of O. Helly, K. Borsuk, P. Erdős, H. Hadwidger, L. Fejes Tóth, B. Grübaum and many other excellent mathematicians who initiated new combinatorial approaches to classical questions studied by ...

متن کامل

A combinatorial problem in geometry

© Foundation Compositio Mathematica, 1935, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier ...

متن کامل

A lecture on integral geometry

Integral geometry originated from geometric probability. It studies random geometric objects in a probability space endowed with a measure that is invariant under a group of transformations. The geometric objects are points, lines, planes, solids, curves, surfaces, geodesics, etc. Works of Crofton, Poincaré, Sylvester, and others set up the early stage of integral geometry. Poincaré defined the...

متن کامل

Combinatorial integral approximation

We are interested in structures and efficient methods for mixed-integer nonlinear programs (MINLP) that arise from a first discretize, then optimize approach to timedependent mixed-integer optimal control problems (MIOCPs). In this study we focus on combinatorial constraints, in particular on restrictions on the number of switches on a fixed time grid. We propose a novel approach that is based ...

متن کامل

Combinatorial optimization in geometry

In this paper we extend and unify the results of [20] and [19]. As a consequence, the results of [20] are generalized from the framework of ideal polyhedra in H to that of singular Euclidean structures on surfaces, possibly with an infinite number of singularities (by contrast, the results of [20] can be viewed as applying to the case of non-singular structures on the disk, with a finite number...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 1980

ISSN: 0001-8708

DOI: 10.1016/0001-8708(80)90022-5