A synopsis of Combinatorial Integral Geometry
نویسندگان
چکیده
منابع مشابه
Combinatorial Geometry
Combinatorial geometry is the study of combinatorial properties of fundamental geometric objects, whose origins go back to antiquity. It has come into maturity in the last century through the seminal works of O. Helly, K. Borsuk, P. Erdős, H. Hadwidger, L. Fejes Tóth, B. Grübaum and many other excellent mathematicians who initiated new combinatorial approaches to classical questions studied by ...
متن کاملA combinatorial problem in geometry
© Foundation Compositio Mathematica, 1935, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier ...
متن کاملA lecture on integral geometry
Integral geometry originated from geometric probability. It studies random geometric objects in a probability space endowed with a measure that is invariant under a group of transformations. The geometric objects are points, lines, planes, solids, curves, surfaces, geodesics, etc. Works of Crofton, Poincaré, Sylvester, and others set up the early stage of integral geometry. Poincaré defined the...
متن کاملCombinatorial integral approximation
We are interested in structures and efficient methods for mixed-integer nonlinear programs (MINLP) that arise from a first discretize, then optimize approach to timedependent mixed-integer optimal control problems (MIOCPs). In this study we focus on combinatorial constraints, in particular on restrictions on the number of switches on a fixed time grid. We propose a novel approach that is based ...
متن کاملCombinatorial optimization in geometry
In this paper we extend and unify the results of [20] and [19]. As a consequence, the results of [20] are generalized from the framework of ideal polyhedra in H to that of singular Euclidean structures on surfaces, possibly with an infinite number of singularities (by contrast, the results of [20] can be viewed as applying to the case of non-singular structures on the disk, with a finite number...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 1980
ISSN: 0001-8708
DOI: 10.1016/0001-8708(80)90022-5